Appendix B

Effective theories of quantum Hall states

and edge state transport

B.1 Chern-Simons gauge field

B.1.1 Chern-Simons action

First let us quickly look at what Chern-Simons action is and what it does. A gauge invariant

term in (2 + 1)D is Maxwell term containing f,, = J,a, — 0,q,,.

SMX = /dgxf,uyfuu (Bl)

Another example is so-called Chern-Simons term (¢,,,,5 18 the totally anti-symmetric tensor.)
Scs = / d*we,na,0,a) (B.2)

The Hamiltonian of the Chern-Simons field in the gauge of ag = 0 vanishes
Hesg = / dgxaoeijaiaj = 0 (B.3)

Therefore, the spectrum of the Chern-Simons gauge field is identically zero and costs no

energy to populate them. The equation of motion of the Chern-Simons field is

dScs
day

= foo = 0 (B.4)
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Namely, the field strength of the Chern-Simons field is zero. The solution is
ay = Oux (B.5)

This is merely a gauge transformation. Hence, the Chern-Simons gauge field is not dynam-

ical by itself. Let us couple the gauge field to a matter field j, = (p, j;) and 9,5, = 0.

K 4
¥ = —Eeumauﬁym%—%h (B.6)

, where x > 0 is an integer. The equation of motion of a,, is

0Z 0Z . K

0L _ i _k _ B.
da,, a“a(aﬂa,,) Jn = 5w Ovn 0 (B.7)

, defining f;; = bfor p = 0and fo; = ¢; for p = 1,2,

2
p = T, (B.8)
K
2
€€ = ——Ji (B.9)

Apparently the dynamics of the Chern-Simons field is now induced upon the coupling to
the matter field. Regarding that ay does not have a time derivative term, one can view y = 0
component as a constraint between the matter field and the Chern-Simons gauge field: flux
attachment 27“ p = b attaching 2?” gauge flux of b to the particle. This is the heart of the
Chern-Simons action in the context of quantum Hall effect. As will be seen, dressing the
matter with Chern-Simons gauge field can induce fractional statistics on the particles of the

matter.

B.1.2 Flux attachment transformation

In the following, the key point will be so-called Chern-Simons gauge field coupled to matter
field. Hence let us illuminate the operation of the flux attachment. Suppose there is a free

(2+1)D fermionic field under magnetic field A

1
L = P(ith — gAo)v — 50" (@0, — gAY (B.10)
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, where Ay = 0 and ¢ satisfies the anti-commutation relation [¢(7), ¢! (2/)] L =0(@-2).
If we can map the problem of particles under magnetic field to some different particles
under different magnetic field, we may able to solve the problem or obtain a better picture
of the system. Hence we wish to attach p®, of fictitious magnetic fluxes to a particle at
position &y, where &, = % = 27 in the unit of 74 = e = 1. Then the vector potential a that

generates such a flux is as follows.

pPod(F — ) = V xa(d) (B.11)

o
i(z) = %ve( Zy) = (B.12)

,where 0(7 — ) is the angle of Z; looking from 7 in counter-clockwise. Extending this to
many particle system, the particle density p = ¢ is p(7) = Y, §(Z — 7;) and the vector

potential is

Z@ve 7)) = p;;“/d BAFVVOE - ) (B.13)

Now the constraint reads
pPop(T) = €;0;a;(7) (i, =1,2) (B.14)

, where ¢;; = (% §). The fluxes are locked to the particles at all time. One can rephrase
it as a constraint between the fictitious magnetic flux and particles. Expressing a constraint
p®Pop = €;;0;a; is best done in the Lagrangian formalism. Employing a flux-attachment

constraint term L, with a Lagrange multiplier ay = 0 as

1
Lra = ao| —¢€;;0;,a; — (B.15)
f 0<pCI>0 j0idj P)

merely adding L, to the original Lagrangian does the flux attachment.
% V*(i0y — qAo)Y L V*(i0; — qA)* Y + ! 0 (B.16)
= 10y — — —"(10; — qA; ap| ——¢€i;0ia; — .
0 — qAg 5 q '\ pdy €ij0itty — p

Now we perform a gauge transformation 1/ = €*/(%)¢ such that

@) = - [@Pp@eE-) @ = PaN@ B
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Substituting 1) = €*/(® ¢ and the Lagrangian is now
.l 1 ... 2 1
<z = QZ5 (280 - (qu + ag))gb - —QZS (281 - (qu + CLZ)) QZS + —aoeijaiagB.IS)
2m pDg
Note that Ag = ag = 0. Important to notice that the commutation relation of ¢ is

[¢(f),¢T(£/)L = §(@—-2) , (p:even) (B.19)
[0(@),0'(«")]_ = 8(@—&) , (p:odd) (B.20)

Therefore, attaching the fictitious magnetic flux to the particle changes the statistics of the
particles. If the constraint does not exist, nothing forces the fluxes to follow the motion
of the particles. Hence one can not define the angles between the particles and the gauge
transformation by ¢» = ¢*/(¥)» becomes meaningless. For odd p, ¢ becomes bosonic and
¢ stays fermionic for even p. If the strength of the external magnetic field is —p times the
electron density, the fictitious magnetic field will cancel the external magnetic field on the
average and ¢ becomes bosons at zero effective magnetic field. The ground state of such
system will be bose-condensed state (superconducting state). Note that the argument so far
did not mention anything about Coulomb interaction among particles which is supposed to
be the crucial ingredient for the FQHE. Now we should remember that the angle between
particles cannot be defined if they stand on the same location. Hence, the validity of the
flux attachment actually relies on the strong Coulomb interaction among the particles so
that they would not come to the same position. Though we will not include the interaction
among particles in the following argument, one should recognize their role. After all, what
we derive here is the long-distance/time effective theory of fractional quantum Hall fluids.
If one wishes to know various (fast) dynamics and electromagnetic response of them, the
details of interaction should be considered.

In the general gauge (®y = 27)

11

Scg = y / d*we,na,0,a (B.21)

that transforms as a,, — a,, + 0, x. As will be seen, there are two kinds of Chern-Simons

field in the effective theory of quantum Hall states. One is this Chern-Simons field for the
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flux attachment transformation, which is crucial for a rigorous derivation of the effective
theory but does not have to show up in a heuristic derivation (see later). The other, which
will appear repeatedly in the following, appears upon a so-called duality transformation be-
tween particles and vortices. The reader should notice the distinction between their origins

since they seem superficially indifferent.

B.1.3 Duality transformation

Here we introduce so-called duality transformation in the context of quantum Hall effect,
which exchange particles and vortices (quasiparticles). In the dual picture, the vortices be-
come the fundamental particles and the particles become the vortices. The physical origin
of the transformation traces back to the fact that winding a vortex (quasiparticle) around
a particle and vice verse but in the other way around do the same job in two dimension.
Namely one can describe the same system focusing on the particles as well as the vortices.

In general gauge, the flux-attached Lagrangian is

11

. I ..
<z = ¢ (Zao — (qAo + ao))¢ - %cb (Zai — (qA; + ai))2¢ + EEGW,\%@GA

In the condensed phase of ¢ by choosing odd p properly, ¢ = \/ﬁee‘) and the low-energy

action is as follows. The first term describes the phase stiffness.

1 2 11
<z = §p(aue —(qA, + au)) + E}—jew,\auﬁya,\ (B.23)
The gauge invariant ¢ particle current is j,, = 558%.
Ju = p(@,ﬁ — (qA, + au)) (B.24)

Ju satisfies the continuity equation d,j, = 0 or equivalently divj, = 0, which can be
solved simply, reminding div - rot = 0,

, 1
Ju = gewk&,ak (B25)

This re-expression of j,, is the heart of duality transformation. Since the excitation of the

condensate is not only the phase modulation but also amplitude modulation that leads to
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topological excitaitons (vortices). The phase of the condensate winds by 27 around one

vortex. The vortex (quasiparticle in QHE) j7 in the condensate can be described by

_ 1
o= %waﬁw (B.26)

One can see the equivalence to V X a,, from the previous section. Substituting j* and the

dual j, back into the original j,,,

1 _ 1
;auf;w = ]Zp - %Eul/)\al/ (C]A/\ + Cl)\) (B27)
, where f,,, = 0,0, —0, . This equation of motion for o, is derived from dual Lagrangian
o 1 — A 1 11
dual — %f/wfuu + Oé,u.]# + %O‘uQuy)\au At %aqu)\ayak + E;e;w)\au&ﬁlgg)

From this Lagrangian, we want to eliminate a, so that we can look only at the dynamics
of j and v, coupled to electromagnetic field. Using (€0),\ = €29, let us make a shift

a, = a, + pa,, and drop (integrate out) a,,.

1 . q p
o%dual = %f,uuf,uy + aujgp + %a;ﬁm/)\ayA)\ - Ea,u,e,u,u)\aua)\ (B29)

If we only look at the long wavelength and low energy part of the dynamics, we can neglect
the Maxwell term because it has two derivatives while the Chern-Simons term has only one

derivative.

p . q
Ll = —EQNEW,A&,@A + i + %aueuM&,A,\ (B.30)

We have obtained the dual Lagrangian where the quasiparticles (vortices) act as the fun-
damental particles interacting with the gauge field that is the dual representation of the
original particles. One can view the vortices feels the Magnus force from the condensate

of the particles.

B.1.4 Fractional statistics

Suppose A, = 0 and let us derive the effective action for the matter field. Shift a;, such

that o, = &, + 27”(68)#,\]';1\1’.
~ ~ . 1.
s — /d?’x{— %a#(ea)ﬂ,\a,\ + )Y (B.31)

7



Here we dropped the suffix "dual”. Now integrating out ¢, is easy and we are left with

only the dressed quasiparticles.

™ . 1.
S = . / dPxjiP(d) 2 i (B.32)
We would like to consider the phase acquired upon encircling particle 1 around particle
2. The two particle system is j& = j2, + j'%,, where ji", = [,0(Z — Z,(t)) and ji}, =
ln@;n0(x — Zy(t)). Let us introduce Iy and [y as the number of the agglomeration of the

paritcles at a location. Fixing the particle 2 7»(t) = 0, jg% = l26(2) and ji = 0. Define

(€0)dXe = fuu

8y

X

|72

&y

—

EOV/\auf)\ = 5(‘7:) ) f('f) =

1
— B.33
o (B.33)
f,. 1s the vector potential of a delta-like flux of the gauge field (fy = 0). We can calculate
the Berry phase. The trajectory of the particle 1 is #,(t) = r(cosf, sinf) and & (t) =

ér(—sinﬁ ,cosB) for 0 < 0 < 27, which is equivalent to exchanging the particles twice and

hence aquire twice the exchange statistical phase 20cs = ™2 [ d®zjl, f, = &2 [ dté.

Wlllg

Ocs = (B.34)
D

Therefore, the quasiparticles dressed by «, act as carrying % of ¢. For example, for [; =
lo = 1 and p = 3 (filling factor v = 1/3), Ocs = 2+ A bunch of three particles, I} = Iy = 3,

leads to g = 3m — m, recovering the fermionic statistics.

B.1.5 Gauge transformation and edge action

Assuming j,, = 0, let us performe a gauge transformation o, — oy, + 9, X,

p p
0Scs = —E/d‘q’xe#y,\a#xﬁya)\ = —E/d?’xaﬂ(xew,\ﬁya,\) (B.35)

The total derivative can be transformed to the boundary integral, which vanishes in sys-
tems without boundaries. The gauge invariance therein is preserved. However, for systems

with boundary, the boundary term does not vanish and Scg breaks the gauge invariance.
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Note that if we substitute the solution of the Euler-Lagrange equation, the classical trajec-
tory of the field, €,,,0,a, = 0 into the boundary term yields 0Scs = 0. Therefore, the
Chern-Simons action is gauge invariant in the classical theory. However, it breaks down
in the quantum theory and demands a physical degree of freedom to preserve the gauge
invariance. We have two ways to remedy this problem; (1) make the boundary physical by
restricting the gauge or (2) add an action cancelling the boundary term. Here, we take (1)

and set the boundary along = at y = 0 (unbounded in ¢ and x)

(SSCS = —%/d:f;dtxeyyx&,aA (B36)
™

Here we again have two ways to maintain the gauge symmetry 0Scs = 0; (1) x|y,=0 = 0
or (2) €20, = 0. Here we take (1). The condition x|,—o = 0 means that once a gauge
is chosen, one cannot change the gauge freely any more. What one can still do is to take a
different gauge function XY = x +c, where c|,—o = 0. Even for a gauge potential of the form
a, = 0,¢, the condition x|,—o = 0 forbids to gauge it away, which makes ¢ dynamical.
In other words, different gauges for o, correspond to different physical realizations of
the boundary and one cannot connect them by gauge transformations. Here, the different
physical realizations mean different edge velocities v, which is determined by the steepness
of the confinement pontential setting the boundary of the system. For now, let us here take
ap = 0 as the gauge condition, which leads to the constraint €;;0;c; = 0 for 4, j = 1, 2. Its

solution is a; = 0;¢’ and substituting them into the action leads to

Scs = G / d*20,(0,¢'0:¢') = . / dtdz0,¢' 0,4’ | =0 (B.37)
AT Y AT =

Therefore, the edge action is, introducing ¢'(z,y,t)|,=0 = ¢(x, 1),

Setge = —L / dtdd, 60,0 (B.38)
dm
, whose Hamiltonian is indentically zero.

Hedge =0 (B39)

Something is apparently wrong here. Now let us change the coordinate of the system

such that { = ¢, # = o — vt and § = y. Suppose ¢(z,y,t) transforms to G(Z, 7, 1)
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by the coordinate change. % = %6%?{) + g_:t;aég,f) = 8(58(?{). Similarly, % =
%—%é?t) + g—f—a%‘?t) = —va¢(§§’t) + a(ﬁg’t) , which reads 0; = 0, + v0,, 0z = 0, and

0y = 0,. Therefore, oy = o + va,, az = o, and ay = «,,. Taking the new constraint

a; = 0leads to Seqpe = £ [ dtdz0;¢0,9.

Seage = —fw / dtdz (0, + v0,) 0,6 (B.40)

, whose Hamiltonian is

Hegge = % / dtdz(9,¢)° (B.41)

For the stability, p > 0 and v > 0. The Chern-Simons theory is known to be a metric-free
topological field theory, hence the bulk theory is independent of the choice of the metric.
But the action of the edge depends on the specific metric. It is evident that the change of

coordinate cannot be done by the gauge transformations.

B.2 Bulk effective theory of quantum Hall liquid

B.2.1 Heuristic derivation of hierarchical bulk action

Here, we discuss the heuristic argument that leads to the effective action of the bulk S by
Wen and Zee based on the hierarchical scheme. First, let us consider principal Laughlin
states v = 1/m, where m is an odd number. There are several conditions that the effec-
tive action should satisfy. Among them, showing here the current conservation and the

experimentally observed Hall conductance,

(1) : a,uju =0 (B42)
2
(2) = V;]—EWA&/A,\ (B.43)
T
, Where ¢ = —e and B < 0, hence the Hall conductance is —V% and the electric field is

—é€our0, Ay. The condition (1) can be solved as follows.

) 1
Jup = %GMV)\aVOé)\ (B44)
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The electric current is derived by % = qj, = %e#m&,m. The condition (2) can be
satisfied if one takes .Z = —%a# Ju+ qjuA,. Computing the Euler-Lagrange equation for

o, recovers the condition (2).

m q
Y = ——« 1,81,0 =
ISTHN A 2

. AMEW,)\aVOz)\ (B45)

The quasiparticle excitation can be supplemented with a source term [« jiF, where [ is
the “charge” representing the coupling strength between j%” and the quasiparticles, acting
as bosons, only see the Chern-Simons gauge field as the “magnetic” field. Since they are
not directly coupled to the EM field, they carry no electric charge. If one integrate out
o, the dressed quasiparticles are directly coupled to the EM field and acquires the electric
charge and the correct fractional statistics. When the density of quasiparticles become
Jo = 2j¢" (2 flux quantum of «,, per quasiparticle), the quasiparticles can bose-condense.

The dual representation of the quasiparticle is jgp = %ij 10, &y, hence the constraint reads

%GW,\&,Q A= %ew,\&,& A With . = 0. Thus, the action of the second hierarchy is

1 2
<z = %Q#E#V)\ayd)\ - E&qu)\ay&)\ (B46)

, hence adding the second hierarchy to the first one, the full action is

1
<z = —EKUQLGW,\QVOd—F%tIAMEWAE)Vaﬁ (B.47)

, where ¢ = —e, (o', 0%) = (@, @), (t1,t2) = (1,0) and K = (4 ') with p; = m and

p2 = 2. Here, the Einstein’s summation convention is implied. For m = 3, the action
describes v = 2/5, namely, Ky/5 = ( s ) The third hierarchy describes v = 3/7 state,
3 -10
qr=(-12 —1].
where K337 ( L2 )
qB
2mjé

Let us derive the filling factor v = from the action in a incremental manner. The

Euler-Lagrange equation of the time component o} and o2

qB 1

-1 -2 -1 -2
frd — = :> V= B.48
o Pjo—Jo » Jo = P2Jo P (B.48)
qB g , 9 : : 1 (B49)
oo = Puo—Jo o Jo = Pdo—Jo . Jo = pads = vE———i—
27 P1— —x
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One can show that the filling factor can be derive as follows.

1
t'K 't = K[ = p—— (B.50)
L

po—--

So far, the hierarchical states appeared above are only the particle-like states. Let us

now consider a hole-like state v = 2/3. Having the first hierarchy v = 1, the inter-hierarchy

coupling is j¢ = —2j2, which comes from an action
1 ~ -2 -
<z = ga#ew,\@a)\ — Ea“ew&&,ak (B.51)
) ) 1 -1
Therefore, the K matrix of v = 2/3 stateis K5 /3= . Just to make sure,
-1 -2
qB S 5l 9 1 2
90 = Jo—do s Jo = 2 = S (B.52)

Likewise, the K matrix of v = 3/5 state is K3 /5 = (—(1]1 :é :0% ) , which indeed yields the

correct filling factor.

B.2.2 Rigorous derivation of hierarchical bulk action

Let us recall the dual Lagrangian after integrating out the gauge field a,, = ab attaching p

gauge flux to the matter and assign proper suffices for convenience.

< = aijzpl + %aiew,\&,A,\ - Z—;aiew,\ayai (B.53)

Just for clarification, we recover the j%* field explicitly.

. . /. 1, /. 2
aijgpl = din (z@o — a0)¢qp1 — 2—m1¢qp1 (z@i — ai) Gap1 (B.54)

If 79! is macroscopically populated that they can condense, we can do the same trick to
“cancel” the gauge flux of ai by attaching p, gauge flux of them via ai. One can see the

correspondences A, = «;, and a;, = a;, from the previous argument.

* (1 q . . 9
¥ = ¢qp1 (280 - (OZO + ag))¢Qpl + 2_m1 ¢qp1 (Zaz — (O_/Z' —+ a?)) ¢qp1 (B55)
—1 1 4!

+47Tp2 €0, — %aieuuxayAx — Ea;euyAﬁyai (B.56)
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In the codensed phase of ¢yp1, Pgp1 = /P16,

1 2 1 q P1
£ = §p1 (8M91 — (Oé}t + CLZ)) + szaieuw&,ai + %aiewA&,A,\ — Ea}tew(\lﬁﬁﬂ]g

Now the dual representation of ¢, is

, 1
P1 (@91 — (Oé,lll + ai)) = ]qpl = %eu,,)\&,ai (BSS)

In the same manner as before, integrating out ai from the action and neglecting the Maxwell

term of o3 leads to

P11 1 1 2 D2 o 2 q 1
f = —EQuEuVAayOJA + %a“qu,y)\al/a)\ - anG#VAal’a)\ + %Oéf#y)\ayA)\

This can be encapslated into the aforementioned K-matrix of the second hierarchy K =
(7)) andt = (1,0).

—1 p2

B.2.3 Jain’s construction

The Jain scheme is to view the FQHEs as an extension of IQHEs, where composite fermion
Landau levels take place of the electron Landau levels by regarding an electron as a com-
posite of a fermion with p flux quantum (p: even) in the opposite direction to the external
magnetic field. Since p is an even number, it does not affect the statistics of the fermion
upon an exchange with another. Let us first formulate the effective action for IQHE v = N.
Each filled Landau level is the condensate of the composite boson with m = 1 viewed in the
hierarchical scheme. Then, we can extend the previous scheme to incorporate the IQHEs,
which is simply X' = 1yxn (N X N unit matrix) and t = (1,1, -, 1)x. This is nothing

but stacking N layers of m = 1 state in the hierarchical scheme.

Now, perform a transformation that regards 1/ as a composite fermion ¢cp = e~/ @)y
attached with p (even number) gauge flux quantum of a, to partially cancel the external

magnetic field.

1 1
ZL = Y&p(idy — (qAo + ao) ) or — %1?2?(@@ — (g4 + a;))*Yer + ﬂp&u%ﬂﬂﬁd&
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Now suppose ¢ fill N composite fermion Landau levels and the gaps between the levels

are big enough that each level conserve the number of fermions ;.

Z = zj: {l/}f (100 — (qAo + ag) ) s — %@/J}k(i@i — (qA;i + a;))*Yr | + ﬁauew@ﬂ,ﬁ@
i

Now we do another transformation to view ¢; = ¢*/1(*)¢; via alﬂ.

: ..

£ = Z |:gb; (280 — (QAQ + ag + (Z(I)))¢] — %qb](z@z - (qAZ +a; + (Zil)2¢[
I

1 I

+_

1
A aueuw\&/ai + Raueuu)\aua)\ (B.63)

In the condensed phase of ¢;s, the low-energy effective Lagrangian becomes

Pr 2 1 1
¥ = Z [? (@ﬂ — (qAo +ap + aé)) + Eaiew,\&,ai + Epauew,\&,a,\
1

Perform a duality transformation for each field

pr(0,0 — (qAo+ ao +af)) = jJor = %euy,\ﬁyaf\ (B.64)
The dual Lagrangian neglecting the Maxwell term,
<z = ! ! 0) A L7 d,ak L d,a} L LBIOS
= o ;% (PN ,,(a,\ +4q A) + %aueum Lay + ECLMGMV)\ Lay + Kpa“e“ N

Integrating out a,, and ay,

1 p q
~ Dl — o (Z aﬁ) €20y ( > a,ﬂ) + 5 - Auunduo]
I 1

The K matrix is now

g:

N
I=1

K = 1nxn+pCnxn (B.67)

, where p is even, Cyxn is a matrix with 1 in all the components. The charge vector is
t = (1,1,--- ,1)x. In the Jain’s composite fermion picture, ¥ = 2/5 can be regarded as
the composite fermion filling factor 2 (vorp = 2), where N = 2 and p = 2. Therefore,

Ky;s =(33). v=2/3isgiven N =2and p = —2. Ky/3 = (3 1) witht = (1,1) for both.
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B.2.4 Filling factor, quasiparticle charge and statistics

Be it hierarchical scheme or Jain scheme, the effective Lagrangian of fractional quantum
Hall effects with some populations of quasiparticles is compactly described as follows.

1

Z = _4_KIJ€MV)\OC;I¢81/CY§ + 2115[5“")‘14“8110& + Loy, it (B.68)
T ™

uj 2

we now wish to integrate out the Chern-Simons gauge fields in order to look only at long
distance physics of the electromagnetic response and the quasiparticles of quantum Hall

fluids. The Euler-Lagrange equation with respect to ai yields

0L 0L 1
’ “oar = g iy DirAr — g = 0 (B.69
>\5<a/\a£) 5045 2’/T IJ(E )M)\O[)\ 27‘(‘ (E )U)\ A I] ( )
1 = 0 component reads
B
Kudi =ty it (B.70)

Performing a shift for a, = &/, + &/, where o], = 27K} (5£t,4, + (0), 1173%7) and
substituting the shifted gauge fields into the original Lagrangian,
1 R . 1 - -
<z = —EK”ozi(ea)#,\od + EKIJozi(e@)#,\od (B.71)
&/, and &, are decoupled, hence we can easily integrate out all the d/s. Explicitly calculat-

ing the second term,

2
geff = Z_ﬂtIK t]A (68) ,\A)\—th[KI lequA —|—7Tl1KI lequ(Ea)‘u;]ng
2

VCZW u(€0)aAN + qigF TA, +91qupl(66)uij§p‘] (B.72)

, where v is filling factor (0,, = VC%), qs 1s the charge of the quasiparticles specie
J (g = —e) and 6;; is the statistical angle between quasiparticle species / and J. This

describes the long-distance electromagnetic response of quantum Hall states.

ve = Y 4Kt (B.73)
1,J

= thIK;}lJ (B.74)

9[J = Wl]KIJlJ (B75)
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B.3 Edge state transport

B.3.1 Reduction from bulk to edge

Performing a gauge transformation for a system with boundary leads to a violation of gauge

symmetry. Taking S and &/, = a/, + 9, f" (Note that a/, here is different from a, appeared

previously),
1
08 = —Ku / dx3e™ 0, (f10,al) (B.76)
The edge action reads
1 t
Sedge = /dtdl’ |: - E (KIJat¢Iax¢J + ‘/}Jam¢lar¢J) + %Aueuuaugbl (B77)

The third term is | dzdtA,,J, with ;1 = 0,1 and we drop it for simplicity.

1
Sedge = _E\/dtde]JatgblabeJ+%Jax¢lax¢J (B78)
Having the canonical momentum of ¢/, %ﬁ:ﬁ = 0,¢", the Hamiltonian is
1 I J
Hedge - 4_ dx‘/ﬂ]axgz5 a;rgb (B79)
T

Therefore, in order for the energy to be positive, V7, must be positive definite.

B.3.2 Quantized thermal conductance

Let us diagonalize K;; and V;; simultaneously in three steps. Both matrices are real and
symmetric. Similarity transformation by A; with A] Ay = 1, A KA; = \;6;; = Kp and
then employing Ay = &;;/+/|\;] but with AJ Ay = 6;5/|\;| = |Kp'], Ag AT KA Ay =
sgn(A;)d;; = 1;6;;. Now, a diagonal matrix 7 with entries of =1 apparently commutes with
AJ A] VA Ay, which is real and symmiteric still. Hence, using A3 with A] nA3 = 1, which
is a Lorentz boost, Aj AJ AT VA AyAs = AJvAs = ,6;;. Define ¢ = AJAJA] 6, the

edge action is now

1 R
Sedge = _Ez / dtdx(n;0; + 9,0,)9" 0,¢" (B.80)
1
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The Hamiltonian is
1 ~ 2
Heqge = g EI /dxvl(&vqﬁ) (B.81)

Here, 0,¢' /2n = p! and, likewise, ©; has to be positive in order for the energy to be
positive. The direction of the propagation of the edge wave is dictated by sgn(n;). The
thermal current is

— ~ _ dq hﬁfq o 7.(.2]{;% 2
JT = ;n[U[nT’[ = /%m = ;?7] 6h T (B82)

, where nr is the energy density of the mode /. Therefore, the thermal conductance

/{T:%is

B WQk%T B B
pro= Y T = vrko (B.83)
I

Here, we have defined vy = >, ny = T'r(n) and ko = %T as the expression for the non-
interacting system. The numbers of forward and backward going modes n. are given by
Tr (&T") , respectively. Their difference is n, —n_ = T'r(n). Itis apparent that the thermal
conductance of an edge mode contribute equallly regardless of its charge conductance.

Here, reconsider the relation between n and K. Kt = (A] KA;)™t = AP KA,
namely and K ! = A1K51A1T. Reversing the transformation /\1A2,/\377A3TA;r Al = AlAQ’r]A;AI =
A K 'AT = K. Therfore, defining M* = AlAgAgﬁT’?AgA;AI,

Mt—M- = K (B.84)
The difference between the number of forward-going modes and backward-going modes is

given by the bulk topological matrix.

B.3.3 K-matrix and charge and thermal conductance

We have found above that both charge conductance o = Vc% and thermal conductance

ﬂZIZQB T of fractional quantum Hall effects are quantized and dictated by the bulk

R = Ut
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topological property.

ve = t Kt (B.85)

vr = Tr(n) (B.86)

As clearly seen, v and v are topological quantities. In order to keep v invariant, one can
only add counter-propagating edge channels in pairs, which does not affect the v either.

The Wiedemann-Franz law states that the ratio of thermal conductivity over charge
conductivity is proportional to temperature. The proportionality constant is called Lorentz
number. Using the result of free electrons, Ly = 7r2k% / 3e?, the Lorentz number of frac-
tional quantum Hall effects violates the free electron result.

Ly = = - " (B.87)
TO'H Vo

, which is reduced to the free electron result only in integer quantum Hall effects.

B.4 Two-terminal conductance of clean systems

B.4.1 Single channel

We now compute the two-terminal conductance of QHE states. Starting with v = 1, namely
K =1,V =wvand n = 1, where only single chiral electron channel is present. The charge
density on the edge is p = -0,¢. Regarding the continuity equation d;p + 9,1 = 0,
I = 5=0,¢. The action is

S = —ﬁ / dtdz8,6(i0, + v, )¢ (B.88)

Here, we use the imaginary time formalism. The DC response to an electrostatic potential

V(2') coupled to p(z') is (I) = [dtD(x — 2',w — 0)V (/).

/ 0 —i e /
Da—\w—0) = - / et [0:0(2,0). 0,60, 1)
_ Z ezq z—z') qln
q(inw, —vq)
2 .
_ %Q(T]([E . x/))%ein(u)-&-ie)(m—x’)/v (B89)

88



In the step, the analytic continuation iw,, — w + i€ was performed. The functional average
was evaluated with S. The 6 function reflects the chiral nature of the edge propagation,
showing that the current at x depends only on the voltages at positions " upstream of .
In the limit w — 0, the integral will be dominated by values of z’ that are deep into the
upstream reservoir (the voltage in the left ohmic contact).

no— Sy G, - & B.90
<>_E(L_R):> 2 = 7 (B.90)

Summing the contribution on the opposite edge (I) = —%VR and compute the two-
terminal conductance. Now let us see the effect of adding an intra-channel Coulomb inter-

action to the above simple model, namely K = 1 and V = v as = [ dtdzv.($)>.

S = —ﬁ / dtdad,d(i0, + (v + v.)0s)d (B.I91)

2

The effect of the Coulomb interaction is merely shifting the velocity, hence G, = <.

B.4.2 Co-propagating channels

The non-interacting v = 2 is merely doubling the single channel case, namely K = (}9),
V= (% 5)andn = (}), which leads to G5 = 2%. Hence let us add an inter-channel

Coulomb interaction to v = 2, namely the velocity matrix is now V' = ()}, %2 ).

1
S = I / dtdx [3x¢1(iat + 010;) 1 + 0p¢2(10; + v204) P2 + 20120,,010,P2

1 > T T Wy, — V14 V12¢
= =D 0 . Q=g (B.92)

q,wn V124 iwn — U2q

Here, ¢y, = (¢1(q,wn), d2(q, wy)). det(€2) = 0 yields the eigen velocities.

+ — 09)2 + 4v? 1
vy = (1 02) = /(g = a)?” + Ao = @i§\/602+411%2 (B.93)

2

Therefore, det(§2) = q(iw, — v4q)(iw, — v_q). The electric current is now I = 5=0;(¢1 +

¢2) and the correlator contains four terms. The functional average of each term corresponds
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to the component Q;jl for ¢, 5 = 1,2. The two-terminal conductance can be derived from
D(z —a',w—0) = —5 >, 1) 3 QL Defining cost) = 2v12/+/00% + 40,

01 _ Wy, — V14 + Wy, — V2q — 2012q
Z v (twn, — v1q) (iw, —v_q)

ij n +4q n -q

1 + cos# N 1 — cost
Wy —V4q W, —V_q

2 2

e e
- = 2— B.94
h h B34

= Gy = (14 cosf+1— cosb)

The inter-channel Coulomb interaction in co-propagating channels has no effect on G5.

B.4.3 Counter-propagating channels and KFP theory
We now consider v = 2/3, namely K = (} %),V = (,} %2)andn = (§ 2).

1
S = E /dtdl’ {895(/51 (Zat -+ Ulax)qbl + 381«@52(—2813 + Ugam)¢2 + 2@12836@5181(/52

1 2 Te T Wy — V14 V129
= 2D bl . =g | (B.95)
" gion V1o —3iw, — vag
det(2) = 0 yields
v — (01 — v2) & /(1 + v9)? — 4v3,/3 (B.96)

2

Again the electric current is now I = 5=0,(¢1 + ¢2).

3 Z ol _ wp, — U1q — 3iwp — 302 + 2v12¢
- " (iwy, — v4q)(iw, —v_q)
. U1 + 3U2 - 21)12 + 2U+ 1 U1 + 31)2 — 2U12 + 2v_ 1
N vy —U_ Wy — Vi q vy —U_ Wy, —U_q
A+1 A—-1

Wy —V4q Wy, — V_q
We have introduced ¢ = (2v12/v/3)/(v1 + v9) and A = (2 — v/3¢)/ (V1 — ¢2)

1 e? 2 e?
Gy = g(Ale—i-A—l)E = §Aﬁ (B.97)

Hence the inter-channel Coulomb interaction in counter-propagating channels makes G4

non-universal and does not leads to the robust quantization of G5 = 2/3 as observed in
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experiments. The stability criteria is |c| < 1. Only in the case of ¢ = v/3/2, A = 1. For
v12 = 0, A = 2 giving rise to the maximum conductance.

We have considered two channels with different conducntances. We may also consider
an imaginary v = 1 — 1, namely counter-propagating electron channels in one edge. K =

(%), V=(Jy%)andn = ({9). det(Q) = 0 yields the eigen velocities.

p o mwm) \/(;n +v2)? — dojy (B.98)

Again the electric current is now I = 3-0;(¢1 + ¢2).

A A
2.0 = — — - (B.99)
ij

n—ULq i, —v_q

, where ¢ = 2v12/(v1 +v9) and A = (1 — ¢)/ (V1 — ¢?) with |¢| < 1.

Gy = 2A% (B.100)

(3 is again non-universal. The maximum conductance appears when v;2 = 0 and A = 1.
Here, I briefly summarize the flow of the theory by Kane, Fisher and Polchinski (KFP)
[7]. As shown priory, the two terminal DC conductance of clean v = 2/3 state is G =
QA%. Only for ¢ = V3 /2, A = 1. The non-universal conductance is due to the inter-
channel Coulomb interaction between the counter-propagating channels. KFP [7] argued
that the inclusion of the random inter-channel tunneling due to impurities is absolutely
crucial for the robust DC conductance quantization as experimentally observed. Adding
the random inter-channel tunneling Sg;s and changing the basis to the “charge” and “spin”
bases, the full action is now S = S, + S, + Syis» + Seo. If the coupling between the
charge and spin modes S., can be neglected for the moment, the charge mode S. is already
quadratic and possesses a global U (1) symmetry associated with the charge conservation.
The disorder only affects the spin part S, + Sy;s .. However, it turns out that a local SU (2)
transformation supplemented with an auxiliary field diagonalizes the “’spin+disorder” part
to S,, possessing a global SU(2) symmetry, which describes the upstream neutral mode
propagating without any decay. Recovering the coupling term S.,, now the full action is

S = S5.+4 S, + Sen, Where S, is transformed to S, via the SU(2) transformation. One can
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show that S,,, is an irrelevant operator upon renormalization transformation looking at the
low energy. Namely, at the zero temperature, S.,, vanishes. Here, the random scattering is
absolutely crucial for the coupling S, to be irrelevant. Therefore, at the zero-temperature
(on the fixed line where A = 1), the ”disorder+Coulomb” problem is completely solved
and the full action becomes merely S = S, + S,,, where the charge and neutral modes
are completely decoupled and both modes propagate infinite distance in each direction. At
finite temperatures, the coupling term S, is still finite (not yet renormalized to zero), hence

the neutral mode acquires a finite decay length. Employing the transformed action, the two-

2

terminal conductance contributed solely by the charge mode is quantized as G = %% even

at finite temperatures.
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