
Appendix B

Effective theories of quantum Hall states

and edge state transport

B.1 Chern-Simons gauge field

B.1.1 Chern-Simons action

First let us quickly look at what Chern-Simons action is and what it does. A gauge invariant

term in (2 + 1)D is Maxwell term containing fµν = ∂µaν − ∂νaµ.

SMX =

∫
d3xfµνfµν (B.1)

Another example is so-called Chern-Simons term (ϵµνλ is the totally anti-symmetric tensor.)

SCS =

∫
d3xϵµνλaµ∂νaλ (B.2)

The Hamiltonian of the Chern-Simons field in the gauge of a0 = 0 vanishes

HCS =

∫
d3xa0ϵ

ij∂iaj = 0 (B.3)

Therefore, the spectrum of the Chern-Simons gauge field is identically zero and costs no

energy to populate them. The equation of motion of the Chern-Simons field is

δSCS

δaµ
= fνλ = 0 (B.4)
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Namely, the field strength of the Chern-Simons field is zero. The solution is

aµ = ∂µχ (B.5)

This is merely a gauge transformation. Hence, the Chern-Simons gauge field is not dynam-

ical by itself. Let us couple the gauge field to a matter field jµ = (ρ, ji) and ∂µjµ = 0.

L = − κ

4π
ϵµνλaµ∂νaλ + aµjµ (B.6)

, where κ > 0 is an integer. The equation of motion of aµ is

∂L

∂aµ
− ∂µ

∂L

∂(∂µaν)
= jµ −

κ

2π
ϵµνλ∂νaλ = 0 (B.7)

, defining fij = b for µ = 0 and f0i = ei for µ = 1, 2,

b =
2π

κ
ρ (B.8)

ϵijej =
2π

κ
ji (B.9)

Apparently the dynamics of the Chern-Simons field is now induced upon the coupling to

the matter field. Regarding that a0 does not have a time derivative term, one can view µ = 0

component as a constraint between the matter field and the Chern-Simons gauge field: flux

attachment 2π
κ
ρ = b attaching 2π

κ
gauge flux of b to the particle. This is the heart of the

Chern-Simons action in the context of quantum Hall effect. As will be seen, dressing the

matter with Chern-Simons gauge field can induce fractional statistics on the particles of the

matter.

B.1.2 Flux attachment transformation

In the following, the key point will be so-called Chern-Simons gauge field coupled to matter

field. Hence let us illuminate the operation of the flux attachment. Suppose there is a free

(2+1)D fermionic field under magnetic field A⃗

L = ψ∗(i∂0 − qA0)ψ − 1

2m
ψ∗(i∂i − qAi)

2ψ (B.10)

73



, where A0 = 0 and ψ satisfies the anti-commutation relation
[
ψ(x⃗), ψ†(x⃗′)

]
+
= δ(x⃗− x⃗′).

If we can map the problem of particles under magnetic field to some different particles

under different magnetic field, we may able to solve the problem or obtain a better picture

of the system. Hence we wish to attach pΦ0 of fictitious magnetic fluxes to a particle at

position x⃗0, where Φ0 =
h
e
= 2π in the unit of ~ = e = 1. Then the vector potential a⃗ that

generates such a flux is as follows.

pΦ0δ(x⃗− x⃗0) = ∇× a⃗(x⃗) (B.11)

a⃗(x⃗) =
pΦ0

2π
∇θ(x⃗− x⃗0) =

pΦ0

2π

⃗̂z × (x⃗− x⃗0)

|x⃗− x⃗0|2
(B.12)

,where θ(x⃗− x⃗0) is the angle of x⃗0 looking from x⃗ in counter-clockwise. Extending this to

many particle system, the particle density ρ = ψ†ψ is ρ(x⃗) =
∑

i δ(x⃗− x⃗i) and the vector

potential is

a⃗(x⃗) =
∑
i

pΦ0

2π
∇θ(x⃗− x⃗0) =

pΦ0

2π

∫
dx′3ρ(x⃗′)∇θ(x⃗− x⃗′) (B.13)

Now the constraint reads

pΦ0ρ(x⃗) = ϵij∂iaj(x⃗) (i, j = 1, 2) (B.14)

, where ϵij = ( 0 1
−1 0 ). The fluxes are locked to the particles at all time. One can rephrase

it as a constraint between the fictitious magnetic flux and particles. Expressing a constraint

pΦ0ρ = ϵij∂iaj is best done in the Lagrangian formalism. Employing a flux-attachment

constraint term Lfa with a Lagrange multiplier a0 = 0 as

Lfa = a0

(
1

pΦ0

ϵij∂iaj − ρ

)
(B.15)

merely adding Lfa to the original Lagrangian does the flux attachment.

L = ψ∗(i∂0 − qA0)ψ − 1

2m
ψ∗(i∂i − qAi)

2ψ + a0

(
1

pΦ0

ϵij∂iaj − ρ

)
(B.16)

Now we perform a gauge transformation ψ = eiJ(x⃗)ϕ such that

J(x⃗) = −p
∫
dx′3ρ(x⃗′)θ(x⃗− x⃗′) , ai(x⃗) =

Φ0

2π
∂iJ(x⃗) (B.17)
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Substituting ψ = eiJ(x⃗)ϕ and the Lagrangian is now

L = ϕ∗(i∂0 − (qA0 + a0)
)
ϕ− 1

2m
ϕ∗(i∂i − (qAi + ai)

)2
ϕ+

1

pΦ0

a0ϵij∂iaj(B.18)

Note that A0 = a0 = 0. Important to notice that the commutation relation of ϕ is

[
ϕ(x⃗), ϕ†(x⃗′)

]
+

= δ(x⃗− x⃗′) , (p : even) (B.19)[
ϕ(x⃗), ϕ†(x⃗′)

]
− = δ(x⃗− x⃗′) , (p : odd) (B.20)

Therefore, attaching the fictitious magnetic flux to the particle changes the statistics of the

particles. If the constraint does not exist, nothing forces the fluxes to follow the motion

of the particles. Hence one can not define the angles between the particles and the gauge

transformation by ψ = eiJ(x⃗)ϕ becomes meaningless. For odd p, ϕ becomes bosonic and

ϕ stays fermionic for even p. If the strength of the external magnetic field is −p times the

electron density, the fictitious magnetic field will cancel the external magnetic field on the

average and ϕ becomes bosons at zero effective magnetic field. The ground state of such

system will be bose-condensed state (superconducting state). Note that the argument so far

did not mention anything about Coulomb interaction among particles which is supposed to

be the crucial ingredient for the FQHE. Now we should remember that the angle between

particles cannot be defined if they stand on the same location. Hence, the validity of the

flux attachment actually relies on the strong Coulomb interaction among the particles so

that they would not come to the same position. Though we will not include the interaction

among particles in the following argument, one should recognize their role. After all, what

we derive here is the long-distance/time effective theory of fractional quantum Hall fluids.

If one wishes to know various (fast) dynamics and electromagnetic response of them, the

details of interaction should be considered.

In the general gauge (Φ0 = 2π)

SCS =
1

4π

1

p

∫
d3xϵµνλaµ∂νaλ (B.21)

that transforms as aµ → aµ + ∂µχ. As will be seen, there are two kinds of Chern-Simons

field in the effective theory of quantum Hall states. One is this Chern-Simons field for the

75



flux attachment transformation, which is crucial for a rigorous derivation of the effective

theory but does not have to show up in a heuristic derivation (see later). The other, which

will appear repeatedly in the following, appears upon a so-called duality transformation be-

tween particles and vortices. The reader should notice the distinction between their origins

since they seem superficially indifferent.

B.1.3 Duality transformation

Here we introduce so-called duality transformation in the context of quantum Hall effect,

which exchange particles and vortices (quasiparticles). In the dual picture, the vortices be-

come the fundamental particles and the particles become the vortices. The physical origin

of the transformation traces back to the fact that winding a vortex (quasiparticle) around

a particle and vice verse but in the other way around do the same job in two dimension.

Namely one can describe the same system focusing on the particles as well as the vortices.

In general gauge, the flux-attached Lagrangian is

L = ϕ∗(i∂0 − (qA0 + a0)
)
ϕ− 1

2m
ϕ∗(i∂i − (qAi + ai)

)2
ϕ+

1

4π

1

p
ϵµνλaµ∂νaλ  

In the condensed phase of ϕ by choosing odd p properly, ϕ =
√
ρeeθ and the low-energy

action is as follows. The first term describes the phase stiffness.

L =
1

2
ρ
(
∂µθ − (qAµ + aµ)

)2
+

1

4π

1

p
ϵµνλaµ∂νaλ (B.23)

The gauge invariant ϕ particle current is jµ = δS
δ∂µθ

.

jµ = ρ
(
∂µθ − (qAµ + aµ)

)
(B.24)

jµ satisfies the continuity equation ∂µjµ = 0 or equivalently divjµ = 0, which can be

solved simply, reminding div · rot = 0,

jµ =
1

2π
ϵµνλ∂ναλ (B.25)

This re-expression of jµ is the heart of duality transformation. Since the excitation of the

condensate is not only the phase modulation but also amplitude modulation that leads to
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topological excitaitons (vortices). The phase of the condensate winds by 2π around one

vortex. The vortex (quasiparticle in QHE) jqpµ in the condensate can be described by

jqpµ =
1

2π
ϵµνλ∂ν∂λθ (B.26)

One can see the equivalence to ∇× aµ from the previous section. Substituting jqpµ and the

dual jµ back into the original jµ,

1

ρ
∂νfµν = jqpµ − 1

2π
ϵµνλ∂ν

(
qAλ + aλ

)
(B.27)

, where fµν = ∂µαν−∂ναµ. This equation of motion for αµ is derived from dual Lagrangian

Ldual =
1

2ρ
fµνfµν + αµj

qp
µ +

q

2π
αµϵµνλ∂νAλ +

1

2π
αµϵµνλ∂νaλ +

1

4π

1

p
ϵµνλaµ∂νaλ(B.28)

From this Lagrangian, we want to eliminate aµ so that we can look only at the dynamics

of jqpµ and αµ coupled to electromagnetic field. Using (ϵ∂)µλ ≡ ϵµνλ∂ν , let us make a shift

aµ = ãµ + pαµ and drop (integrate out) ãµ.

Ldual =
1

2ρ
fµνfµν + αµj

qp
µ +

q

2π
αµϵµνλ∂νAλ −

p

4π
αµϵµνλ∂ναλ (B.29)

If we only look at the long wavelength and low energy part of the dynamics, we can neglect

the Maxwell term because it has two derivatives while the Chern-Simons term has only one

derivative.

Ldual = − p

4π
αµϵµνλ∂ναλ + αµj

qp
µ +

q

2π
αµϵµνλ∂νAλ (B.30)

We have obtained the dual Lagrangian where the quasiparticles (vortices) act as the fun-

damental particles interacting with the gauge field that is the dual representation of the

original particles. One can view the vortices feels the Magnus force from the condensate

of the particles.

B.1.4 Fractional statistics

Suppose Aµ = 0 and let us derive the effective action for the matter field. Shift αµ such

that αµ = α̃µ +
2π
p
(ϵ∂)µλj

qp
λ .

S =

∫
d3x

[
− p

4π
α̃µ(ϵ∂)µλα̃λ +

π

p
jqpµ (ϵ∂)−1

µλj
qp
λ

]
(B.31)
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Here we dropped the suffix ”dual”. Now integrating out α̃µ is easy and we are left with

only the dressed quasiparticles.

S =
π

p

∫
d3xjqpµ (ϵ∂)−1

µλj
qp
λ (B.32)

We would like to consider the phase acquired upon encircling particle 1 around particle

2. The two particle system is jqpµ = jqpµ,1 + jqpµ,2, where jqp0,n = lnδ(x⃗ − x⃗n(t)) and jqpi,n =

lnẋi,nδ(x − x⃗n(t)). Let us introduce l1 and l2 as the number of the agglomeration of the

paritcles at a location. Fixing the particle 2 x⃗2(t) = 0, jqp0,2 = l2δ(x) and jqpi,2 = 0. Define

(ϵ∂)−1
µλj

qp
λ,2 ≡ fµ,

ϵ0νλ∂νfλ = δ(x) , f⃗(x⃗) =
1

2π

z⃗ × x⃗

|x⃗|2
(B.33)

fµ is the vector potential of a delta-like flux of the gauge field (f0 = 0). We can calculate

the Berry phase. The trajectory of the particle 1 is x⃗1(t) = r(cosθ, sinθ) and ⃗̇x1(t) =

θ̇r(−sinθ, cosθ) for 0 ≤ θ ≤ 2π, which is equivalent to exchanging the particles twice and

hence aquire twice the exchange statistical phase 2θCS = πl1l2
p

∫
d3xjqpµ,1fµ = l1l2

p

∫
dtθ̇.

θCS =
πl1l2
p

(B.34)

Therefore, the quasiparticles dressed by αµ act as carrying 1
p

of ϕ. For example, for l1 =

l2 = 1 and p = 3 (filling factor ν = 1/3), θCS = π
3
. A bunch of three particles, l1 = l2 = 3,

leads to θCS = 3π → π, recovering the fermionic statistics.

B.1.5 Gauge transformation and edge action

Assuming jµ = 0, let us performe a gauge transformation αµ → αµ + ∂µχ,

δSCS = − p

4π

∫
d3xϵµνλ∂µχ∂ναλ = − p

4π

∫
d3x∂µ

(
χϵµνλ∂ναλ

)
(B.35)

The total derivative can be transformed to the boundary integral, which vanishes in sys-

tems without boundaries. The gauge invariance therein is preserved. However, for systems

with boundary, the boundary term does not vanish and SCS breaks the gauge invariance.

78



Note that if we substitute the solution of the Euler-Lagrange equation, the classical trajec-

tory of the field, ϵµνλ∂ναλ = 0 into the boundary term yields δSCS = 0. Therefore, the

Chern-Simons action is gauge invariant in the classical theory. However, it breaks down

in the quantum theory and demands a physical degree of freedom to preserve the gauge

invariance. We have two ways to remedy this problem; (1) make the boundary physical by

restricting the gauge or (2) add an action cancelling the boundary term. Here, we take (1)

and set the boundary along x at y = 0 (unbounded in t and x)

δSCS = − p

4π

∫
dxdtχϵyνλ∂ναλ (B.36)

Here we again have two ways to maintain the gauge symmetry δSCS = 0; (1) χ|y=0 = 0

or (2) ϵyνλ∂ναλ = 0. Here we take (1). The condition χ|y=0 = 0 means that once a gauge

is chosen, one cannot change the gauge freely any more. What one can still do is to take a

different gauge function χ̃ = χ+c, where c|y=0 = 0. Even for a gauge potential of the form

αµ = ∂µϕ, the condition χ|y=0 = 0 forbids to gauge it away, which makes ϕ dynamical.

In other words, different gauges for αµ correspond to different physical realizations of

the boundary and one cannot connect them by gauge transformations. Here, the different

physical realizations mean different edge velocities v, which is determined by the steepness

of the confinement pontential setting the boundary of the system. For now, let us here take

α0 = 0 as the gauge condition, which leads to the constraint ϵij∂iαj = 0 for i, j = 1, 2. Its

solution is αi = ∂iϕ
′ and substituting them into the action leads to

SCS = − p

4π

∫
d3x∂y(∂xϕ

′∂tϕ
′) = − p

4π

∫
dtdx∂tϕ

′∂xϕ
′|y=0 (B.37)

Therefore, the edge action is, introducing ϕ′(x, y, t)|y=0 = ϕ(x, t),

Sedge = − p

4π

∫
dtdx∂tϕ∂xϕ (B.38)

, whose Hamiltonian is indentically zero.

Hedge = 0 (B.39)

Something is apparently wrong here. Now let us change the coordinate of the system

such that t̃ = t, x̃ = x − vt and ỹ = y. Suppose ϕ(x, y, t) transforms to ϕ̃(x̃, ỹ, t̃)
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by the coordinate change. ∂ϕ̃(x̃,t̃)
∂x

= ∂x̃
∂x

∂ϕ̃(x̃,t̃)
∂x̃

+ ∂t̃
∂x

∂ϕ̃(x̃,t̃)

∂t̃
= ∂ϕ̃(x̃,t̃)

∂x̃
. Similarly, ∂ϕ̃(x̃,t̃)

∂t
=

∂x̃
∂t

∂ϕ̃(x̃,t̃)
∂x̃

+ ∂t̃
∂t

∂ϕ̃(x̃,t̃)

∂t̃
= −v ∂ϕ̃(x̃,t̃)

∂x̃
+ ∂ϕ̃(x̃,t̃)

∂t̃
, which reads ∂t̃ = ∂t + v∂x, ∂x̃ = ∂x and

∂ỹ = ∂y. Therefore, αt̃ = αt + vαx, αx̃ = αx and αỹ = αy. Taking the new constraint

αt̃ = 0 leads to Sedge =
p
4π

∫
dt̃dx̃∂t̃ϕ̃∂xϕ̃.

Sedge = − p

4π

∫
dtdx(∂t + v∂x)ϕ∂xϕ (B.40)

, whose Hamiltonian is

Hedge =
pv

4π

∫
dtdx

(
∂xϕ

)2 (B.41)

For the stability, p > 0 and v > 0. The Chern-Simons theory is known to be a metric-free

topological field theory, hence the bulk theory is independent of the choice of the metric.

But the action of the edge depends on the specific metric. It is evident that the change of

coordinate cannot be done by the gauge transformations.

B.2 Bulk effective theory of quantum Hall liquid

B.2.1 Heuristic derivation of hierarchical bulk action

Here, we discuss the heuristic argument that leads to the effective action of the bulk S by

Wen and Zee based on the hierarchical scheme. First, let us consider principal Laughlin

states ν = 1/m, where m is an odd number. There are several conditions that the effec-

tive action should satisfy. Among them, showing here the current conservation and the

experimentally observed Hall conductance,

(1) : ∂µjµ = 0 (B.42)

(2) : qjµ = ν
q2

2π
ϵµνλ∂νAλ (B.43)

, where q = −e and B < 0, hence the Hall conductance is −ν q2

2π
and the electric field is

−ϵ0νλ∂νAλ. The condition (1) can be solved as follows.

jµ =
1

2π
ϵµνλ∂ναλ (B.44)
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The electric current is derived by δS
δAµ

= qjµ = q
2π
ϵµνλ∂ναλ. The condition (2) can be

satisfied if one takes L = − 1
2ν
αµjµ + qjµAµ. Computing the Euler-Lagrange equation for

αµ recovers the condition (2).

L = −m

4π
αµϵµνλ∂ναλ +

q

2π
Aµϵµνλ∂ναλ (B.45)

The quasiparticle excitation can be supplemented with a source term lαµj
qp
µ , where l is

the ”charge” representing the coupling strength between jqpµ and the quasiparticles, acting

as bosons, only see the Chern-Simons gauge field as the ”magnetic” field. Since they are

not directly coupled to the EM field, they carry no electric charge. If one integrate out

αµ, the dressed quasiparticles are directly coupled to the EM field and acquires the electric

charge and the correct fractional statistics. When the density of quasiparticles become

j0 = 2jqp0 (2 flux quantum of αµ per quasiparticle), the quasiparticles can bose-condense.

The dual representation of the quasiparticle is jqpµ = 1
2π
ϵµνλ∂να̃λ, hence the constraint reads

1
2π
ϵµνλ∂ναλ = 2

2π
ϵµνλ∂να̃λ with µ = 0. Thus, the action of the second hierarchy is

L =
1

2π
αµϵµνλ∂να̃λ −

2

4π
α̃µϵµνλ∂να̃λ (B.46)

, hence adding the second hierarchy to the first one, the full action is

L = − 1

4π
KIJα

I
µϵµνλ∂να

J
λ +

q

2π
tIAµϵµνλ∂να

I
λ (B.47)

, where q = −e, (α1, α2) = (α, α̃), (t1, t2) = (1, 0) and K =
(

p1 −1
−1 p2

)
with p1 = m and

p2 = 2. Here, the Einstein’s summation convention is implied. For m = 3, the action

describes ν = 2/5, namely, K2/5 =
(

3 −1
−1 2

)
. The third hierarchy describes ν = 3/7 state,

where K3/7 =
(

3 −1 0
−1 2 −1
0 −1 2

)
.

Let us derive the filling factor ν = qB
2πj10

from the action in a incremental manner. The

Euler-Lagrange equation of the time component α1
0 and α2

0

qB

2π
= p1j

1
0 − j20 , j10 = p2j

2
0 ⇒ ν =

1

p1 − 1
p2

(B.48)

qB

2π
= p1j

1
0 − j20 , j10 = p2j

2
0 − j30 , j20 = p3j

3
0 ⇒ ν =

1

p1 − 1
p2− 1

p3

(B.49)
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One can show that the filling factor can be derive as follows.

t⊤K−1t = K−1
1,1 =

1

p1 − 1
p2−···

(B.50)

So far, the hierarchical states appeared above are only the particle-like states. Let us

now consider a hole-like state ν = 2/3. Having the first hierarchy ν = 1, the inter-hierarchy

coupling is j10 = −2j20 , which comes from an action

L =
1

2π
αµϵµνλ∂να̃λ −

−2

4π
α̃µϵµνλ∂να̃λ (B.51)

Therefore, the K matrix of ν = 2/3 stateis K2/3 =

 1 −1

−1 −2

. Just to make sure,

qB

2π
= j10 − j20 , j10 = −2j20 ⇒ ν =

1

1− 1
−2

=
2

3
(B.52)

Likewise, the K matrix of ν = 3/5 state is K3/5 =
(

1 −1 0
−1 −2 −1
0 −1 −2

)
, which indeed yields the

correct filling factor.

B.2.2 Rigorous derivation of hierarchical bulk action

Let us recall the dual Lagrangian after integrating out the gauge field aµ ≡ a1µ attaching p

gauge flux to the matter and assign proper suffices for convenience.

L = α1
µj

qp1
µ +

q

2π
α1
µϵµνλ∂νAλ −

p1
4π
α1
µϵµνλ∂να

1
λ (B.53)

Just for clarification, we recover the jqp1 field explicitly.

α1
µj

qp1
µ ⇐ ϕ∗

qp1

(
i∂0 − α0

)
ϕqp1 −

1

2m1

ϕ∗
qp1

(
i∂i − αi

)2
ϕqp1 (B.54)

If jqp1 is macroscopically populated that they can condense, we can do the same trick to

”cancel” the gauge flux of α1
µ by attaching p2 gauge flux of them via a2µ. One can see the

correspondences Aµ ⇒ α1
µ and a1µ ⇒ a2µ from the previous argument.

L = ϕ∗
qp1

(
i∂0 − (α0 + a20)

)
ϕqp1 +

q

2m1

ϕ∗
qp1

(
i∂i − (αi + a2i )

)2
ϕqp1 (B.55)

+
1

4πp2
a2µϵµνλ∂νa

2
λ −

1

2π
α1
µϵµνλ∂νAλ −

p1
4π
α1
µϵµνλ∂να

1
λ (B.56)
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In the codensed phase of ϕqp1, ϕqp1 =
√
ρ1e

iθ1 ,

L =
1

2
ρ1
(
∂µθ1 − (α1

µ + a2µ)
)2

+
1

4πp2
a2µϵµνλ∂νa

2
λ +

q

2π
α1
µϵµνλ∂νAλ −

p1
4π
α1
µϵµνλ∂να

1
λ(B.57)

Now the dual representation of ϕqp1 is

ρ1
(
∂µθ1 − (α1

µ + a2µ)
)

= jqp1 =
1

2π
ϵµνλ∂να

2
λ (B.58)

In the same manner as before, integrating out a2µ from the action and neglecting the Maxwell

term of α2
λ leads to

L = − p1
4π
α1
µϵµνλ∂να

1
λ +

1

2π
α1
µϵµνλ∂να

2
λ −

p2
4π
α2
µϵµνλ∂να

2
λ +

q

2π
1
µα ϵµνλ∂νAλ

This can be encapslated into the aforementioned K-matrix of the second hierarchy K =(
p1 −1
−1 p2

)
and t = (1, 0).

B.2.3 Jain’s construction

The Jain scheme is to view the FQHEs as an extension of IQHEs, where composite fermion

Landau levels take place of the electron Landau levels by regarding an electron as a com-

posite of a fermion with p flux quantum (p: even) in the opposite direction to the external

magnetic field. Since p is an even number, it does not affect the statistics of the fermion

upon an exchange with another. Let us first formulate the effective action for IQHE ν = N .

Each filled Landau level is the condensate of the composite boson withm = 1 viewed in the

hierarchical scheme. Then, we can extend the previous scheme to incorporate the IQHEs,

which is simply K = 1N×N (N × N unit matrix) and t = (1, 1, · · · , 1)N . This is nothing

but stacking N layers of m = 1 state in the hierarchical scheme.

L = ψ∗(i∂0 − qA0)ψ − 1

2m
ψ∗(i∂i − qAi)

2ψ (B.60)

Now, perform a transformation that regards ψ as a composite fermion ψCF = e−iJ(x)ψ

attached with p (even number) gauge flux quantum of aµ to partially cancel the external

magnetic field.

L = ψ∗
CF

(
i∂0 − (qA0 + a0)

)
ψCF − 1

2m
ψ∗
CF (i∂i − (qAi + ai))

2ψCF +
1

4πp
aµϵµνλ∂νaλ(B.61)
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Now suppose ψCF fill N composite fermion Landau levels and the gaps between the levels

are big enough that each level conserve the number of fermions ψI .

L =
∑
I

[
ψ∗
I

(
i∂0 − (qA0 + a0)

)
ψI −

1

2m
ψ∗
I (i∂i − (qAi + ai))

2ψI

]
+

1

4πp
aµϵµνλ∂νaλ(B.62)

Now we do another transformation to view ψI = eiJI(x)ϕI via aIµ.

L =
∑
I

[
ϕ∗
I

(
i∂0 − (qA0 + a0 + aI0)

)
ϕI −

1

2m
ϕ∗
I(i∂i − (qAi + ai + aIi )

2ϕI

+
1

4π
aIµϵµνλ∂νa

I
λ

]
+

1

4πp
aµϵµνλ∂νaλ (B.63)

In the condensed phase of ϕIs, the low-energy effective Lagrangian becomes

L =
∑
I

[
ρI
2

(
∂µθ − (qA0 + a0 + aI0)

)2
+

1

4π
aIµϵµνλ∂νa

I
λ

]
+

1

4πp
aµϵµνλ∂νaλ

Perform a duality transformation for each field

ρI
(
∂µθ − (qA0 + a0 + aI0)

)
= jqpI =

1

2π
ϵµνλ∂να

I
λ (B.64)

The dual Lagrangian neglecting the Maxwell term,

L =
1

2π

(∑
I

αI
µ

)
ϵµνλ∂ν

(
aλ + qAλ

)
+

1

2π
αI
µϵµνλ∂νa

I
λ +

1

4π
aIµϵµνλ∂νa

I
λ +

1

4πp
aµϵµνλ∂νaλ(B.65)

Integrating out aµ and aI ,

L =
N∑
I=1

− 1

4π
αI
µϵµνλ∂να

I
λ −

p

4π

(∑
I

αI
µ

)
ϵµνλ∂ν

(∑
I

αI
µ

)
+

q

2π
Aµϵµνλ∂να

I
λ

The K matrix is now

K = 1N×N + pCN×N (B.67)

, where p is even, CN×N is a matrix with 1 in all the components. The charge vector is

t = (1, 1, · · · , 1)N . In the Jain’s composite fermion picture, ν = 2/5 can be regarded as

the composite fermion filling factor 2 (νCF = 2), where N = 2 and p = 2. Therefore,

K2/5 = ( 3 2
2 3 ). ν = 2/3 is given N = 2 and p = −2. K2/3 = ( 1 2

2 1 ) with t = (1, 1) for both.
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B.2.4 Filling factor, quasiparticle charge and statistics

Be it hierarchical scheme or Jain scheme, the effective Lagrangian of fractional quantum

Hall effects with some populations of quasiparticles is compactly described as follows.

L = − 1

4π
KIJϵ

µνλαI
µ∂να

J
λ +

q

2π
tIϵ

µνλAµ∂να
I
λ + lIα

I
µj

qpI
µ (B.68)

we now wish to integrate out the Chern-Simons gauge fields in order to look only at long

distance physics of the electromagnetic response and the quasiparticles of quantum Hall

fluids. The Euler-Lagrange equation with respect to αI
µ yields

∂λ
δL

δ(∂λαI
µ)

− δL

δαI
µ

=
1

2π
KIJ(ϵ∂)µλα

J
λ − q

2π
tI(ϵ∂)µλAλ − lIj

qpI
µ = 0 (B.69)

µ = 0 component reads

KIJj
J
0 = tI

qB

2π
+ lIj

qpI
0 (B.70)

Performing a shift for αI
µ = α̂I

µ + α̃I
µ, where αI

µ = 2πK−1
IJ

(
q
2π
tJAµ + (ϵ∂)−1

µλ lJj
qpJ
λ

)
and

substituting the shifted gauge fields into the original Lagrangian,

L = − 1

4π
KIJ α̂

I
µ(ϵ∂)µλα̂

J
λ +

1

4π
KIJ α̃

I
µ(ϵ∂)µλα̃

J
λ (B.71)

α̂I
µ and α̃I

µ are decoupled, hence we can easily integrate out all the α̂I
µs. Explicitly calculat-

ing the second term,

Leff =
q2

4π
tIK

−1
IJ tJAµ(ϵ∂)µλAλ + qtIK

−1
IJ lJj

qpJ
µ Aµ + πlIK

−1
IJ lJj

qpI
µ (ϵ∂)−1

µλj
qpJ
λ

≡ νC
q2

4π
Aµ(ϵ∂)µλAλ + qJj

qpJ
µ Aµ + θIJj

qpI
µ (ϵ∂)−1

µλj
qpJ
λ (B.72)

, where νC is filling factor (σxy = νC
e2

2π~), qJ is the charge of the quasiparticles specie

J (q = −e) and θIJ is the statistical angle between quasiparticle species I and J . This

describes the long-distance electromagnetic response of quantum Hall states.

νC =
∑
I,J

tIK
−1
IJ tJ (B.73)

qJ = q
∑
I

tIK
−1
IJ lJ (B.74)

θIJ = πlIK
−1
IJ lJ (B.75)
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B.3 Edge state transport

B.3.1 Reduction from bulk to edge

Performing a gauge transformation for a system with boundary leads to a violation of gauge

symmetry. Taking S and ãIµ = aIµ + ∂µf
I (Note that aIµ here is different from aIµ appeared

previously),

δS =
1

4π
KIJ

∫
dx3ϵµνλ∂ν(f

I∂µa
I
λ) (B.76)

The edge action reads

Sedge =

∫
dtdx

[
− 1

4π

(
KIJ∂tϕ

I∂xϕ
J + VIJ∂xϕ

I∂xϕ
J
)
+
qtI
2π
Aµϵµν∂νϕ

I

]
(B.77)

The third term is
∫
dxdtAµJµ with µ = 0, 1 and we drop it for simplicity.

Sedge = − 1

4π

∫
dtdxKIJ∂tϕ

I∂xϕ
J + VIJ∂xϕ

I∂xϕ
J (B.78)

Having the canonical momentum of ϕI , δLedge

∂∂tϕI = ∂xϕ
I , the Hamiltonian is

Hedge =
1

4π

∫
dxVIJ∂xϕ

I∂xϕ
J (B.79)

Therefore, in order for the energy to be positive, VIJ must be positive definite.

B.3.2 Quantized thermal conductance

Let us diagonalize KIJ and VIJ simultaneously in three steps. Both matrices are real and

symmetric. Similarity transformation by Λ1 with Λ⊤
1 Λ1 = 1, Λ⊤

1KΛ1 = λjδij ≡ KD and

then employing Λ2 = δij/
√
|λj| but with Λ⊤

2 Λ2 = δij/|λj| = |K−1
D |, Λ⊤

2 Λ
⊤
1KΛ1Λ2 =

sgn(λi)δij ≡ ηiδij . Now, a diagonal matrix η with entries of ±1 apparently commutes with

Λ⊤
2 Λ

⊤
1 V Λ1Λ2, which is real and symmteric still. Hence, using Λ3 with Λ⊤

3 ηΛ3 = η, which

is a Lorentz boost, Λ⊤
3 Λ

⊤
2 Λ

⊤
1 V Λ1Λ2Λ3 = Λ⊤

3 vΛ3 = ṽiδij . Define ϕ̃ ≡ Λ⊤
3 Λ

⊤
2 Λ

⊤
1 ϕ, the

edge action is now

Sedge = − 1

4π

∑
I

∫
dtdx(ηI∂t + ṽI∂x)ϕ̃

I∂xϕ̃
I (B.80)

86



The Hamiltonian is

Hedge =
1

4π

∑
I

∫
dxṽI(∂xϕ

I)2 (B.81)

Here, ∂xϕI/2π = ρI and, likewise, ṽI has to be positive in order for the energy to be

positive. The direction of the propagation of the edge wave is dictated by sgn(ηI). The

thermal current is

JT =
∑
I

ηI ṽInT,I =

∫
dq

2π

~ṽIq
e~ṽIq/kbT − 1

=
∑
I

ηI
π2k2B
6h

T 2 (B.82)

, where nT,I is the energy density of the mode I . Therefore, the thermal conductance

κT = ∂JT
∂T

is

κT =
∑
I

ηI
π2k2B
3h

T = νTκ0 (B.83)

Here, we have defined νT =
∑

I ηI = Tr(η) and κ0 =
π2k2B
3h

T as the expression for the non-

interacting system. The numbers of forward and backward going modes ñ± are given by

Tr
(
1±η
2

)
, respectively. Their difference is ñ+− ñ− = Tr(η). It is apparent that the thermal

conductance of an edge mode contribute equallly regardless of its charge conductance.

Here, reconsider the relation between η and K. K−1
D = (Λ⊤

1KΛ1)
−1 = Λ−1

1 K−1Λ⊤−1
1 ,

namely andK−1 = Λ1K
−1
D Λ⊤

1 . Reversing the transformation Λ1Λ2Λ3ηΛ
⊤
3 Λ

⊤
2 Λ

⊤
1 = Λ1Λ2ηΛ

⊤
2 Λ

⊤
1 =

Λ1K
−1
D Λ⊤

1 = K−1. Therfore, defining M± = Λ1Λ2Λ3
1±η
2
Λ⊤

3 Λ
⊤
2 Λ

⊤
1 ,

M+ −M− = K−1 (B.84)

The difference between the number of forward-going modes and backward-going modes is

given by the bulk topological matrix.

B.3.3 K-matrix and charge and thermal conductance

We have found above that both charge conductance σH = νC
e2

h
and thermal conductance

κT = νT
π2k2B
3h

T of fractional quantum Hall effects are quantized and dictated by the bulk
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topological property.

νC = t⊤K−1t (B.85)

νT = Tr(η) (B.86)

As clearly seen, νC and νT are topological quantities. In order to keep νT invariant, one can

only add counter-propagating edge channels in pairs, which does not affect the νC either.

The Wiedemann-Franz law states that the ratio of thermal conductivity over charge

conductivity is proportional to temperature. The proportionality constant is called Lorentz

number. Using the result of free electrons, L0 = π2k2B/3e
2, the Lorentz number of frac-

tional quantum Hall effects violates the free electron result.

LH =
κT
TσH

=
νT
νC
L0 (B.87)

, which is reduced to the free electron result only in integer quantum Hall effects.

B.4 Two-terminal conductance of clean systems

B.4.1 Single channel

We now compute the two-terminal conductance of QHE states. Starting with ν = 1, namely

K = 1, V = v and η = 1, where only single chiral electron channel is present. The charge

density on the edge is ρ = e
2π
∂xϕ. Regarding the continuity equation ∂tρ + ∂xI = 0,

I = e
2π
∂tϕ. The action is

S = − κ

4π

∫
dtdx∂xϕ(i∂t + v∂x)ϕ (B.88)

Here, we use the imaginary time formalism. The DC response to an electrostatic potential

V (x′) coupled to ρ(x′) is ⟨I⟩ =
∫
dtD(x− x′, ω → 0)V (x′).

D(x− x′, ω → 0) = −
∫ 0

−∞
dte−iωt e2

(2π)2~
⟨[∂tϕ(x, 0), ∂xϕ(x′, t)]⟩

= −e
2

h

∑
q

eiq(x−x′) qωn

q(iηωn − vq)

=
e2

h
θ(η(x− x′))

iηω

v
eiη(ω+iϵ)(x−x′)/v (B.89)
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In the step, the analytic continuation iωn → ω+ iϵ was performed. The functional average

was evaluated with S. The θ function reflects the chiral nature of the edge propagation,

showing that the current at x depends only on the voltages at positions x′ upstream of x.

In the limit ω → 0, the integral will be dominated by values of x′ that are deep into the

upstream reservoir (the voltage in the left ohmic contact).

⟨I⟩ =
e2

h
(VL − VR) ⇒ G2 =

e2

h
(B.90)

Summing the contribution on the opposite edge ⟨I⟩ = − e2

h
VR and compute the two-

terminal conductance. Now let us see the effect of adding an intra-channel Coulomb inter-

action to the above simple model, namely K = 1 and V = vc as 1
4π

∫
dtdxvc(ϕ)

2.

S = − 1

4π

∫
dtdx∂xϕ(i∂t + (v + vc)∂x)ϕ (B.91)

The effect of the Coulomb interaction is merely shifting the velocity, hence G2 =
e2

h
.

B.4.2 Co-propagating channels

The non-interacting ν = 2 is merely doubling the single channel case, namely K = ( 1 0
0 1 ),

V =
(
v1 0
0 v2

)
and η = ( 1 0

0 1 ), which leads to G2 = 2 e2

h
. Hence let us add an inter-channel

Coulomb interaction to ν = 2, namely the velocity matrix is now V = ( v1 v12
v12 v2 ).

S =
1

4π

∫
dtdx

[
∂xϕ1(i∂t + v1∂x)ϕ1 + ∂xϕ2(i∂t + v2∂x)ϕ2 + 2v12∂xϕ1∂xϕ2

]

=
1

4π

∑
q,ωn

ϕ⃗ ⊤∗
q,ωn

Ωϕ⃗q,ωn , Ω = q

 iωn − v1q v12q

v12q iωn − v2q

 (B.92)

Here, ϕ⃗q,ωn = (ϕ1(q, ωn), ϕ2(q, ωn)). det(Ω) = 0 yields the eigen velocities.

v± =
(v1 + v2)±

√
(v1 − v2)2 + 4v212
2

≡ v̄ ± 1

2

√
δv2 + 4v212 (B.93)

Therefore, det(Ω) = q(iωn − v+q)(iωn − v−q). The electric current is now I = e
2π
∂t(ϕ1 +

ϕ2) and the correlator contains four terms. The functional average of each term corresponds
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to the component Ω−1
ij for i, j = 1, 2. The two-terminal conductance can be derived from

D(x− x′, ω → 0) = − e2

h

∑
q e

iq(x−x′)
∑

ij Ω
−1
ij . Defining cosθ = 2v12/

√
δv2 + 4v212 ,∑

ij

Ω−1
ij =

iωn − v1q + iωn − v2q − 2v12q

(iωn − v+q)(iωn − v−q)

=
1 + cosθ

iωn − v+q
+

1− cosθ

iωn − v−q

⇒ G2 = (1 + cosθ + 1− cosθ)
e2

h
= 2

e2

h
(B.94)

The inter-channel Coulomb interaction in co-propagating channels has no effect on G2.

B.4.3 Counter-propagating channels and KFP theory

We now consider ν = 2/3, namely K = ( 1 0
0 −3 ), V = ( v1 v12

v12 v2 ) and η = ( 1 0
0 −1 ).

S =
1

4π

∫
dtdx

[
∂xϕ1(i∂t + v1∂x)ϕ1 + 3∂xϕ2(−i∂t + v2∂x)ϕ2 + 2v12∂xϕ1∂xϕ2

]

=
1

4π

∑
q,ωn

ϕ⃗ ⊤∗
q,ωn

Ωϕ⃗q,ωn , Ω = q

 iωn − v1q v12q

v12q −3iωn − v2q

 (B.95)

det(Ω) = 0 yields

v± =
(v1 − v2)±

√
(v1 + v2)2 − 4v212/3

2
(B.96)

Again the electric current is now I = e
2π
∂t(ϕ1 + ϕ2).

3
∑
ij

Ω−1
ij = −iωn − v1q − 3iωn − 3v2q + 2v12q

(iωn − v+q)(iωn − v−q)

=
v1 + 3v2 − 2v12 + 2v+

v+ − v−

1

iωn − v+q
− v1 + 3v2 − 2v12 + 2v−

v+ − v−

1

iωn − v−q

=
∆+ 1

iωn − v+q
− ∆− 1

iωn − v−q

We have introduced c = (2v12/
√
3)/(v1 + v2) and ∆ = (2−

√
3c)/(

√
1− c2)

G2 =
1

3
(∆ + 1 +∆− 1)

e2

h
=

2

3
∆
e2

h
(B.97)

Hence the inter-channel Coulomb interaction in counter-propagating channels makes G2

non-universal and does not leads to the robust quantization of G2 = 2/3 as observed in
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experiments. The stability criteria is |c| < 1. Only in the case of c =
√
3/2, ∆ = 1. For

v12 = 0, ∆ = 2 giving rise to the maximum conductance.

We have considered two channels with different conducntances. We may also consider

an imaginary ν = 1− 1, namely counter-propagating electron channels in one edge. K =

( 1 0
0 −1 ), V = ( v1 v12

v12 v2 ) and η = ( 1 0
0 −1 ). det(Ω) = 0 yields the eigen velocities.

v± =
(v1 − v2)±

√
(v1 + v2)2 − 4v212
2

(B.98)

Again the electric current is now I = e
2π
∂t(ϕ1 + ϕ2).∑

ij

Ω−1
ij =

∆

iωn − v+q
− ∆

iωn − v−q
(B.99)

, where c = 2v12/(v1 + v2) and ∆ = (1− c)/(
√
1− c2) with |c| < 1.

G2 = 2∆
e2

h
(B.100)

G2 is again non-universal. The maximum conductance appears when v12 = 0 and ∆ = 1.

Here, I briefly summarize the flow of the theory by Kane, Fisher and Polchinski (KFP)

[7]. As shown priory, the two terminal DC conductance of clean ν = 2/3 state is G2 =

2∆ e2

h
. Only for c =

√
3/2, ∆ = 1. The non-universal conductance is due to the inter-

channel Coulomb interaction between the counter-propagating channels. KFP [7] argued

that the inclusion of the random inter-channel tunneling due to impurities is absolutely

crucial for the robust DC conductance quantization as experimentally observed. Adding

the random inter-channel tunneling Sdis and changing the basis to the ”charge” and ”spin”

bases, the full action is now S = Sc + Sσ + Sdis,σ + Scσ. If the coupling between the

charge and spin modes Scσ can be neglected for the moment, the charge mode Sc is already

quadratic and possesses a global U(1) symmetry associated with the charge conservation.

The disorder only affects the spin part Sσ +Sdis,σ. However, it turns out that a local SU(2)

transformation supplemented with an auxiliary field diagonalizes the ”spin+disorder” part

to Sn, possessing a global SU(2) symmetry, which describes the upstream neutral mode

propagating without any decay. Recovering the coupling term Scσ, now the full action is

S = Sc+Sn+Scn, where Scσ is transformed to Scn via the SU(2) transformation. One can
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show that Scn is an irrelevant operator upon renormalization transformation looking at the

low energy. Namely, at the zero temperature, Scn vanishes. Here, the random scattering is

absolutely crucial for the coupling Scn to be irrelevant. Therefore, at the zero-temperature

(on the fixed line where ∆ = 1), the ”disorder+Coulomb” problem is completely solved

and the full action becomes merely S = Sc + Sn, where the charge and neutral modes

are completely decoupled and both modes propagate infinite distance in each direction. At

finite temperatures, the coupling term Scn is still finite (not yet renormalized to zero), hence

the neutral mode acquires a finite decay length. Employing the transformed action, the two-

terminal conductance contributed solely by the charge mode is quantized as G = 2
3
e2

h
even

at finite temperatures.
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